Personnaliser les préférences de consentement

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site. 

Toujours actif

Les cookies nécessaires sont requis pour activer les fonctionnalités de base de ce site, telles que la connexion sécurisée ou le réglage de vos préférences de consentement. Ces cookies ne stockent aucune donnée personnellement identifiable.

Les cookies fonctionnels aident à exécuter certaines fonctionnalités telles que le partage du contenu du site Web sur les plateformes de médias sociaux, la collecte de commentaires et d'autres fonctionnalités tierces.

Aucun cookie à afficher.

Les cookies analytiques sont utilisés pour comprendre comment les visiteurs interagissent avec le site Web. Ces cookies aident à fournir des informations sur des mesures telles que le nombre de visiteurs, le taux de rebond, la source de trafic, etc.

Les cookies de performance sont utilisés pour comprendre et analyser les indices de performance clés du site Web, ce qui contribue à offrir une meilleure expérience utilisateur aux visiteurs.

Aucun cookie à afficher.

Les cookies publicitaires sont utilisés pour fournir aux visiteurs des publicités personnalisées en fonction des pages que vous avez visitées précédemment et pour analyser l'efficacité des campagnes publicitaires.

La pulvérisation à l'arc est utilisée dans l'outillage rapide pour créer des moules, des matrices et d'autres composants d'outillage durables et résistants à l'usure, rapidement et de manière rentable.

La pulvérisation à l'arc peut rapidement former des revêtements, réduisant considérablement le temps nécessaire à la production de moules ou de matrices par rapport aux méthodes traditionnelles. Elle est souvent plus économique, en particulier pour la production en petites séries ou le prototypage, car elle réduit le gaspillage de matériaux et le temps d'usinage. Elle permet la création de géométries complexes et de détails fins qui peuvent être difficiles ou coûteux à usiner à partir de matériaux solides.

Autre langue : Fr

La pulvérisation à l'arc électrique pour l'outillage rapide représente une approche transformatrice de la fabrication, alliant vitesse, flexibilité et rentabilité. Cette technique consiste à pulvériser du métal en fusion sur une surface préparée pour créer rapidement des revêtements durables et résistants à l'usure, ce qui la rend particulièrement avantageuse pour la création de moules, matrices et autres composants d'outillage. La capacité de produire et de finir rapidement des outils aux géométries complexes et aux propriétés de matériaux sur mesure réduit considérablement les délais et les coûts associés aux processus d'usinage traditionnels.

De plus, la projection à l'arc sous fil facilite la réparation et la modification des outils existants, prolongeant ainsi leur durée de vie et optimisant l'utilisation des ressources. Par conséquent, cette méthode devient de plus en plus une solution de choix dans les industries nécessitant des solutions d'outillage rapides et fiables, telles que le moulage par injection, le moulage sous pression et l'emboutissage des métaux.

Technologie de projection à l'arc et son application dans la fabrication rapide de moules

1. Principes et caractéristiques de la technologie de projection à l'arc

La technologie de projection à l'arc est une méthode de projection thermique. Son principe consiste à utiliser deux fils métalliques mutuellement isolés comme fils d'électrode consommables et à utiliser un rouleau d'alimentation en fil pour les alimenter en continu et de manière uniforme dans les deux buses conductrices du pistolet de pulvérisation à l'arc connectées respectivement aux pôles positif et négatif de l'alimentation électrique.

Lorsque les deux extrémités des fils sont court-circuitées en raison de l'alimentation, un arc électrique est généré entre elles, ce qui provoque la fusion instantanée des extrémités des fils. Dans le même temps, le métal en fusion est atomisé en microgouttelettes par un flux d'air comprimé, qui sont pulvérisées sur la surface de la pièce à une vitesse très élevée. Après la collision, une déformation plate se produit et un revêtement par projection d'arc électrique est formé après l'empilement [ 1 ] . Par rapport aux autres méthodes de projection thermique, la technologie de projection d'arc électrique présente les caractéristiques suivantes [ 2 , 3 ] :

① Haute efficacité de production.

Le poids du métal pulvérisé par unité de temps lors de la pulvérisation à l'arc est proportionnel au courant de pulvérisation. Lorsque le courant de pulvérisation est de 300 A, 30 kg de fil de zinc, 10 kg d'aluminium et 15 kg d'acier inoxydable peuvent être pulvérisés par heure, ce qui est plus de 3 fois supérieur à celui de la pulvérisation au fil de flamme.


②Haute résistance de liaison du revêtement.

Les particules de pulvérisation à l'arc ont une énergie cinétique élevée et peuvent obtenir une force de liaison plus élevée sans augmenter la température de la pièce ou utiliser des substrats coûteux. Lors de la pulvérisation de bronze d'aluminium, les propriétés d'auto-adhérence du revêtement sont présentées, ce qui améliore encore la force de liaison. En général, la force de liaison des couches de pulvérisation à l'arc peut atteindre 20 MPa, soit 2,5 fois celle des couches de pulvérisation à la flamme.


③Haute efficacité thermique.

Arc spraying directly converts electrical energy into thermal energy to melt metal, and the thermal energy utilization rate can be as high as 60%~70%, which is the most fully utilized energy among all thermal spraying methods.


④Low production cost, safe operation, and simple maintenance.

2.Application of arc spraying technology in mold manufacturing

The basic principle of arc spraying molding technology is to spray a certain thickness of metal coating on the surface of the prototype, and then separate the coated metal shell from the prototype to obtain a mold cavity that is completely consistent with the shape of the prototype.

After the cavity is backed and reinforced, it can be used for reaction injection molding (RIM), vacuum forming, thermoforming and most polyurethane product molding production processes [4,5]. Because of the high efficiency and economy of arc spraying itself, arc spraying molding technology has low cost and short cycle. Compared with the traditional method of manufacturing plastic molds, arc spraying molding technology has the following advantages:

① The prototype does not need to be conductive, and its surface temperature generally does not exceed 60℃ during spraying, so the material is basically not restricted;
② The obtained mold cavity has a clear contour, unchanged external dimensions, and small thermal stress deformation;
③ High molding efficiency, greatly shortening the molding cycle;
④ The prototype size is not limited, and can be as small as a coin or as large as a vacuum forming mold for manufacturing a car roof;
⑤ Small equipment investment and good economic benefits.

3.Development of arc spraying technology

In the past, arc spraying technology was once neglected due to the rough surface of arc spraying coatings. However, due to the transformation of arc spraying equipment in recent years, especially the great improvement of arc spraying guns by TAFA Company in the United States, high-pressure gas is accelerated through a specially designed nozzle as the supersonic atomizing gas flow for arc spraying, which is used to atomize and accelerate molten metal particles to form a dense arc spraying layer.

This type of spray gun sprays tubular wires containing ceramic powders, which can achieve the performance of plasma coatings[6]. The use of supersonic hot gas flow formed by the combustion of ethanol and air as atomizing gas increases the speed and thermal energy of the molten droplet particles and reduces the oxidation of the metal droplets, thereby improving the quality of arc spraying coatings.

New spraying materials are also constantly emerging, especially the development and application of low shrinkage, high hardness alloy wires and tubular wires. Arc spraying can already obtain smooth, dense, low-porosity high-quality coatings. In addition, it has the advantages of high production efficiency, high coating bonding strength and simple process, so this technology has been rapidly developed and applied.

In China, the research and real application of arc spraying technology began in the early 1980s. Beijing Longyuan Company used AFS-300 equipment to carry out rapid mold making applications such as metal cold spray molds and EDM electrodes, and provided services to enterprises.

Abroad, Francois Peres and Arthur Mofakhami of the Rapid Prototyping Center of the Central University of Paris, France, have experimented with arc spraying technology for injection mold manufacturing and conducted in-depth research on the arc spraying molding process [7]. The Technical University of Denmark tried to use the spraying method to manufacture EDM electrodes and found that the produced electrodes had a very high loss rate during the processing and could not be used in actual EDM [8].

Research on arc spraying molding technology

1.Arc spraying molding process based on rapid prototyping

Combining the high efficiency and economy of arc spraying with the rapid and intuitive characteristics of rapid prototyping can realize the rapid and economical manufacturing of injection molds. Arc spraying molding generally includes the following process flow: prototype design – prototype manufacturing – spraying – backing reinforcement – demolding – finishing – assembly – trial mold.


For FDM and LOM rapid prototyping, optimization in terms of material properties, control accuracy and process parameters can produce prototypes with high precision and low roughness[9]; because the material is generally ABS plastic or paper, after spraying, chemical dissolution can be used to release the mold to avoid damage to the spray layer.

Therefore, for arc spraying molding of FDM and LOM rapid prototyping, the key lies in the manufacture of the metal shell, which depends on the selection of spray wire and the optimization of spray process parameters[10].

2.Determination of the spray wire material for arc spraying mold

(1) Main process parameters of arc spraying and their influence on coating performance

The coating performance of arc spraying usually includes coating microstructure, bonding strength, porosity, corrosion resistance, etc. Different spray wire materials have different coating performances. The same material can also obtain different coating performances by using different spray parameters.

① Working voltage

Spraying the same material at different working voltages will produce coatings with different performances. If the working voltage is too low, part of the spray wire material cannot be completely melted and directly flies to the workpiece surface, which will cause irregular coarse particles in the coating.

If the working voltage is too low, the arc cannot be started. If the working voltage is too high, the burning loss of carbon and alloy elements will be aggravated, the oxide content will increase, and the coating surface will become rough. Usually, in order to reduce the burning loss of carbon and alloy elements, a lower working voltage is used as much as possible while ensuring normal spraying [1].

② Spraying current

As the spraying current increases, the coating hardness increases. This is because as the current increases, the oxide content in the coating increases significantly. Although the carbon and alloying elements in the alloy are burned off, the rapid increase in the oxide content plays a more important role, resulting in increased hardness.

Spraying production efficiency is almost proportional to the spraying current, because the spraying current is directly dependent on the wire feeding speed. In addition, the spraying current has a certain influence on the surface morphology and bonding strength of the coating, but the influence is relatively small [1].

③ Compressed air

When arc spraying is performed with unpurified compressed air, the oil and water in the compressed air not only take away a large amount of heat energy, but also increase the oxidation opportunity of the sprayed particles, polluting the surface of the workpiece to be sprayed and the coating itself.

Therefore, the oxide content of the obtained coating increases significantly. In humid weather, untreated compressed air makes spraying impossible. Therefore, the compressed air must be purified. The air pressure also affects the coating performance.

When the air pressure is too low, the particle flight speed is low and the particle stays in the air for a long time, resulting in coarse and loose coating particles and increased oxide content. As the air pressure increases, the atomization effect improves and the coating becomes dense and smooth[5].

④ Spraying distance

The spraying distance has a significant impact on both the metal deposition rate and the coating hardness. As the spraying distance increases, the metal deposition rate decreases. This is because some of the sprayed particles disperse and fly out, while some of the sprayed particles cannot adhere to the substrate due to the decrease in temperature and kinetic energy.

The increase in the spraying distance has three effects on the coating hardness: the temperature of the sprayed particles decreases, the flight speed decreases, resulting in a decrease in the density of the coating; the sprayed particles fly longer in the air, increasing the burnout of carbon and alloy elements; and the oxide content in the coating increases.

The first two factors lead to a decrease in the coating hardness. Although the increase in the oxide content can increase the coating hardness, its effect on the coating hardness is far less than the first two factors. Therefore, the coating hardness decreases with the increase in the spraying distance, and the coating density also decreases.

If the spraying distance is too short, the arc will directly heat the workpiece and the coating, and the compressed air will recoil to form a plain flow area, affecting the atomization effect and coating quality, and bringing difficulties to the operation[5].

⑤ Pretreatment

Like other thermal spraying methods, the quality of substrate surface pretreatment directly affects the bonding strength of the coating. The better the roughening effect, the larger the bonding area between the coating and the substrate, and the higher the bonding strength.


Taking into account the influence of the above factors on coating quality and production efficiency, the D-AS1620 arc sprayer of Beijing Jiangyuan Company was used to spray Zn, Cu, Al and other metal wires. The test results show that arc spraying of Zn, Cu, Al and other metal wires using the process parameters shown in Table 4-1 can obtain coatings with better performance and higher spraying efficiency.

tableau 4 1

(2) Experimental study on the performance of arc spraying mold coating

① Experimental method and purpose

Using common wire materials such as Zn, Al, and Cu as arc spray materials, spraying mold testing was carried out on the surface of ABS plastic rapid prototypes. To ensure good bonding between the coating and the prototype, the prototype surface was sandblasted with brown corundum (36#) before spraying. When spraying Zn, Al, and Cu coatings, two identical metal wires were fed into the two conductive nozzles of the spray gun, while when spraying Zn-A1 pseudo-alloy coatings, one Zn wire and one Al wire were fed into the two conductive nozzles respectively.

The arc spraying process parameters selected for the test are shown in Table 4-2. After spraying, the strength and hardness of different coatings were tested, and their spraying process performance was observed and compared. Finally, a relatively good coating was selected as the material for arc spraying mold.

tableau 4 2
② Experimental results and analysis
A. Coating stress analysis

The key to arc spraying mold making is to form a metal shell with high replication accuracy, certain strength and hardness on the surface of the model. During the spraying process, the metal shell cannot be separated from the model too early, and the shell and the model cannot be greatly deformed, otherwise the metal shell cannot reflect the true shape of the model and the mold will lose accuracy. If the shear stress between the metal coating and the model surface exceeds the shear strength between the interfaces, the metal shell will separate from the model.

The factors that affect the shear stress between the metal shell and the model mainly include the mechanical properties and thermophysical properties of the metal shell material itself, the temperature of the model surface during spraying, and the difference in thermal expansion coefficient between the metal coating and the model material[10]. According to materials science knowledge[11~13], the relevant material parameters of Zn, A1, Cu wire and ABS plastic are shown in Table 4-3.

tableau 4 3

In the early stage of spraying, the molten metal droplets are sprayed at high speed by compressed air onto the model surface with a lower temperature, flattened by impact to form a coating, and rapidly solidified and cooled at a cooling rate of 105℃/s~106℃/s[10]. During the solidification and cooling process, the cooling shrinkage of the metal coating is fixed by the model surface, and thus it is subjected to a large tensile stress.

As the temperature decreases, the deformation of the metal coating changes from mainly plastic deformation to mainly elastic deformation, and the residual stress of the coating is mainly caused by elastic deformation. The elastic-plastic transition temperature range is represented by Tk[14]. At this time, the shrinkage strain and stress of the metal coating are:

001

Where: ΔT – temperature difference from melting point to room temperature of metal
Α – expansion coefficient of metal coating;
E – elastic modulus;
T0 – model surface temperature.

The model surface temperature increases as the spraying progresses. Assuming that the temperature of the model surface is maintained at 60℃ during the subsequent spraying process, the calculation results of strain and stress of different metal coatings are shown in Table 4-4.

tableau 4 4

From the table above, it can be seen that as the melting point of the material increases, the thermal stress and thermal strain generated by the metal coating during the deposition process increase. In general, the elastic modulus of the metal decreases as the temperature increases[15], and the actual internal stress of the metal coating is less than the calculated value. At high temperatures, the creep of the metal offsets part of the elastic deformation.

At the same time, the calculated thermal stress results of materials such as n, Al, Cu (especially Al and Cu) are greater than the tensile strength of the material, which will cause a large number of microcracks in the coating[16] to release most of the internal stress.

After stopping spraying, during the process of the metal coating and the model naturally cooling to room temperature (20°C), since the thermal expansion coefficient of the metal coating is smaller than the thermal expansion coefficient of the ABS plastic model, the internal stress of the metal coating will be partially offset by the shrinkage of the model. The internal stress of the coating when cooled to room temperature can be calculated using the following formula:

002

Where: ER- elastic modulus of ABS plastic:
αR- thermal expansion coefficient of ABS plastic:
K- stress release coefficient.
Then the residual strain of the coating is:

ε= σ/E (4-4)
Assuming that 90% of the internal stress of the metal spray coating is released at 60°C, the average value of the thermal expansion coefficient and elastic modulus of ABS plastic is taken for calculation. The residual internal stress and strain calculation results of each metal spray coating at room temperature are shown in Table 4-5.

tableau 4 5

From the results in Table 4-5, it can be seen that when cooled to room temperature, even if 90% of the internal stress of the metal coating is released through creep and microcracks, and partially offset by the shrinkage of the model, the high melting point metal coating still has a large residual internal stress.

With the continuous deposition of metal, the coatings deposited successively constrain each other, making it more difficult for the coating to release internal stress by generating microcracks, and the residual internal stress is greater at this time. The residual internal stress acts between the metal coating and the model to form shear stress. If this shear stress exceeds the shear strength between the interfaces, the coating will peel and warp.

In summary, during the spraying process, due to the effect of thermal shrinkage, there is a large shear stress between the metal coating and the model interface, which causes plastic deformation of the model and the metal coating on the one hand, and separation of the metal coating and the model due to elastic deformation on the other hand, affecting the accuracy of the arc spraying mold.

Moreover, the higher the melting point of the spraying material, the greater the shear stress, and the greater the impact on the accuracy of the mold. The use of high melting point materials is also easy to burn the surface of the model, affecting the surface finish of the mold.

Therefore, from the perspective of stress, the material of the arc spraying mold should be selected from low melting point metals such as Zn and A1, so that a coating with lower internal stress can be obtained. However, because the mechanical properties of low melting point metals are generally not high, arc spraying molds are mainly used in product trial production.

B. Experimental analysis of mechanical properties of coatings.

It is difficult to achieve excellent mechanical properties and internal stress of the obtained coating by arc spraying molds with Zn, A1, Cu and other metal materials alone. In order to improve the mechanical properties of the mold, if Zn and AI wires are considered to be fed simultaneously for arc spraying, the obtained coating must be different from the pure Zn or AI coating.

Therefore, Zn, A1, Cu and Zn-AI wires were arc sprayed with the process parameters shown in Table 4-2, and their tensile strength, hardness, density and spraying processability were investigated and compared. The experimental results are shown in Table 4-6.

tableau 4 6

From the above table, we can see that the Zn coating has the densest structure and the best spraying processability, but the lowest strength and hardness; the Cu coating has the highest strength and hardness, but the loosest structure and the worst spraying processability; in comparison, the density of the Zn-A1 pseudo-alloy coating is significantly higher than that of the A1 coating, its hardness is higher than that of the n coating and close to that of the A1 coating, and its spraying processability is good.

Since no new phase appears after arc spraying, the strength and hardness of the metal spray coating depend on the mechanical properties of the metal material itself and the organizational structure of the coating. Zn has a low melting point.

During the spraying process, the metallization effect is good, and the metal droplets are evenly and finely deposited on the model surface, so the resulting coating has a high density. A1 has a high melting point. During spraying, the larger droplets are not easy to flatten when deposited on the model surface, and it is easy to form splashes.

The bonding between the coatings is not tight, and the coating is relatively loose. The Zn-AI pseudo-alloy coating is a mechanical mixture of Zn and A1 phases. Since the wires are fed simultaneously and the wire diameters are the same, the volume ratio of Zn and A1 in the coating is 1:1, and the weight ratio is close to 3:1. The fine Zn droplets with a high degree of atomization can fill the larger gaps formed by AI splashes. Therefore, the organization of the Zn-A1 pseudo-alloy coating is dense, close to that of the Zn coating.

It was also found during the spraying process that if the process operation is not proper, the A1 coating, especially the Cu coating, is prone to warping and cracking, as well as separation from the model. If copper is arc sprayed on the LOM paper rapid prototype, the coating cannot be deposited at all, and the prototype surface will be burned or even scrapped due to heat debonding.

The spraying process of Zn and Zn-A1 pseudo alloy is very good. The Zn-A1 pseudo alloy coating has a dense structure, and its strength and hardness are close to those of the A1 coating. It is an arc spraying molding material with good comprehensive mechanical properties.

4. Example of arc spraying mold preparation

Une fois le matériau du moule de pulvérisation à l’arc déterminé, le pseudo-alliage Zn-AI est pulvérisé à l’arc sur les prototypes FDM et LOM respectivement. Une fois la coque métallique déposée sur une certaine épaisseur, elle est renforcée avec un support en résine annulaire au dos, puis le prototype est retiré par dissolution.

Le moule obtenu est représenté sur la figure 4-1. On peut voir que le revêtement de pseudo-alliage Zn-A1 obtenu est dense, a une précision de réplication élevée, a une certaine résistance et dureté, et l'ensemble du processus de moulage est rapide et peu coûteux, ce qui convient au développement et à la production d'essai de nouveaux produits.

Résumé de ce chapitre

En analysant l'influence des principaux paramètres du processus de pulvérisation à l'arc sur les performances du revêtement, combinée à des expériences, les paramètres de processus optimisés adaptés à
la pulvérisation de fil de Zn, A1 et Cu sont trouvés.

Les essais de pulvérisation de métal unique Zn, Al, Cu et pseudo-alliage Zn-Al ont été réalisés avec des paramètres de procédé optimisés, et les propriétés mécaniques de chaque revêtement ont été testées et comparées : la contrainte interne du revêtement provoquée par le retrait thermique du métal Le revêtement pendant la pulvérisation à l'arc a été analysé, la contrainte interne des différents revêtements a été calculée et comparée, et combinée aux propriétés mécaniques de chaque revêtement, il a été conclu que le revêtement en pseudo-alliage Zn-A1 convient au moulage par pulvérisation à l'arc.

La pulvérisation à l'arc du pseudo-alliage Zn-Al a été réalisée sur des prototypes rapides FDM et LOM, et des moules avec des revêtements denses, une précision de réplication élevée, une certaine résistance et dureté ont été obtenus, mais ne pouvaient toujours pas répondre aux exigences de la production de masse, prouvant que le moulage par pulvérisation à l'arc est une méthode de moulage rapide efficace et peu coûteuse adaptée au développement de nouveaux produits et à la production d'essais.

Référence

  • [ 1 ] Zeng Guiyu, Yan Shuqun. Recherche sur la technologie de pulvérisation au fil d'arc, Hunan Metallurgy, 2000, (1) : 3~8(43).
  • [ 2 ] Du Xiaohong. Développement et application de la technologie de pulvérisation à l'arc en Chine. Technologie de surface, 2000, 29(5) : 21~24
  • [ 3 ] Wang Hangong. Technologie de pulvérisation à arc supersonique. Pékin : National Defence Industry Press, 1999. 4~5
  • [ 4 ] Liu Xianjun, Xu Binshi, Ma Shining, etc., Application de la technologie de pulvérisation à l'arc pour fabriquer des moules en plastique. Technologie des moules, 1996, (6) : 25~30
  • [ 5 ] Song Baotong, Yu Linqi, Wei Shuling, Recherche et application de la technologie de fabrication de moules par pulvérisation à l'arc, Usinage électrique et moules, 2000, (1): 39 ~ 41
  • [ 6 ] Wen J.Procédé de pulvérisation à l'arc supersonique.Proc.de l'ITSc(J).Kobe, 1995.317~320
  • [ 7 ] François Peres, Arthur Mofakhami. Outillage rapide à partir de prototypes : la méthode de fabrication de moules par pulvérisation froide, SPIE, 1998, Vo13517 : 79 ~ 90
  • [ 8 ] Qian Bibo, Pan Xiaohong, Cheng Yaodong, etc., Technologie de prototypage rapide et son application dans la fabrication de moules. Recherche et application mécaniques, 1998,11
  • [ 9 ] Zou Guolin, Recherche sur la précision de la modélisation des dépôts fondus et la technologie de fabrication rapide de moules (thèse de doctorat). Dalian : Université de technologie de Dalian, 2002
  • [ 10 ] Wang Yiqing, Zhao Wenzhen et al. Recherche sur les performances des matériaux de moulage par pulvérisation à l'arc, Mechanical Engineering of China, 2000,11(10):1112~1115
  • [ 11 ] Zeng Zhengming. Manuel pratique de technologie des matériaux d'ingénierie, Pékin : Machinery Industry Press, 2001.3
  • [ 12 ] Dong Junguo. Manuel de matériel pratique. Pékin : Presse de l'industrie métallurgique, 2000
  • [ 13 ] An Jiru, Manuel des matériaux métalliques courants en Chine et à l'étranger. Xi'an : Presse universitaire Xi'an Jiaotong, 1990.7
  • [ 14 ] Chen Guozhen, Xiao Keze, Jiang Buju. Manuel des défauts de coulée et des contre-mesures. Pékin : Presse de l'industrie des machines, 1996.177
  • [ 15 ] Société chinoise des métaux, Société chinoise des métaux non ferreux, Manuel des propriétés physiques des matériaux métalliques. Pékin : Presse de l'industrie métallurgique, 1987.58
  • [ 16 ] Tobe S. Macro- et micro-contraintes dans un revêtement par projection de plasma et son comportement en termes de contrainte et de déformation. Actes de la 7e Conférence nationale sur la projection thermique, 1994, Boston, Massachusetts : 693~697
� �
Original text
Rate this translation
Your feedback will be used to help improve Google Translate